CodeContracts &
Clousot

Francesco Logozzo - Microsoft
Mehdi Bouaziz — ENS

CodeContracts?

Specify code with code

public virtual int Calculate(object x) {
Contract.Requires(x != null);
Contract.Ensures(Contract.Result<int>() >= 0);

Advantages
Language agnostic
No new language/compiler ...

Leverage existing tools
IDE, Compiler ...

Disadvantages
Lost beauty

CodeContracts tools

Documentation generator
MSDN-like documentation generation
VS plugin — tooltips as you write

Runtime checking
Postconditions, inheritance ...
Via binary rewriting

Static checking
Based on abstract interpretation
This talk!!!

CodeContracts impact

API| .NET standard since v4

Externally available
~100,000 downloads
Active forum (>7,700 msQ)
Book chapters, blogs ...

Mmoot

o P

CLR via C#

i

1 INDEPTH

Internal and External adoption

Mainly professional
A few university courses

Publications, talks, tutorials
Academic, Programmers conferences

Let’'s demo!

Why abstract interpretation?

Traditional verification workflow

Verification tool based on
Weakest preconditions
Symbolic execution
Model checking

Fix the code?

Understand the warnings

Add missing specifications
Pre/Post-conditions, Object/Loop invariants
Assumptions

Environment, external code, OS ...

Verifier limits
Incompleteness....

Fix bugs?

Tough task verifying a program with bugs...

Tedious and expensive process

Reality Is a little bit different

New features, regressions, refactoring ...

Help programmer, not drown her
“Verification” is only one facet
Should support correct SW development

Why Abstract interpretation?

Focus on properties of interest

Few programmers interested in V3aVv...
Null dereferences a lot more relevant!

Programmer friendly, Tunable, Precise
Easy to explain what’s wrong

Properties known ahead of time
“Reverse engineered” by some users

Infer, not deduce or search
Loop invariants, contracts, code fixes ...

The power of inference

publpgbint Mae(Maki(1ndTn) arr)
{ q
Contrygh. Raguiresreden ;!= null);

Contrgp. Regpines(anrilenghh X edkth; i++)

Contrgct.Ensures(Contract.ForAll(®, arr.Length, j => arr[j] <= Contract.Result<int>()));
ContracbaﬁngqresQG¢q§q§ct.Exists(O, arr.Length, j => arr[j] == Contract.Result<int>()));

if (el > max)
var max =pariody ;
for (yar i = 1; 1 < arr.lLength; i++)

Copptarh- Aasert(l <= i);

antract.Assert(Contract.ForAll(G, i, j => arr[j] <= max)); public int Max(int[] arr)

Contract.Assert(Contract.Exists(@, i, j => arr[j] == max)); {
Yar el = arr[i]; var max = arr[0];
if (el > max) for (var i = 1; i < arr.Length; i++)
max = el; {
¥ var el = arr[i];
if (el > max)
return max; max = el;
3
} }

return max;
}
CodeContracts: Suggested requires: Contract.Requiresiarr != null);
CodeContracts: Suggested requires: Contract.Requires(l < arr.Length):
CodeContracts: Suggested ensures: Contract.Ensures(Contract.ForAll{D, arr.Length, _k_ == arf[_k_] == Contract.Result<System. Int32= ()}

Q.

CodeContracts: Suggested ensures: Contract.Ensures(Contract.Exists(0, arr.Length, _j__ =» arr[_j_] == Contract.Result<Systern.Int32= ()]

T

Code Repairs

int BinarySearch(int[] array, int value)
{

Contract.Requires(array != null);

var inf = 0;

var sup = array.Length - 1;

while (inf <= sup)

{
var index = (inf + sup) / 2; <€
var mid = array[index];

if (value == mid) return index; -
if (mid < value) inf = index + 1;

else sup = index - 1;

}

return -1;

Suggestion: Consider replacing the expression (inf + sup) / 2 with an equivalent,
b yet not overflowing expression. Foo inf + (sup - inf) /2

Scaling up

Real code bases are huge

The promise of automatic proving has been a holy grail for a long time — Even when | was in academia it was possible
to reason about toy programs. The main fear that | have is that the current CC engine is not designed to scale
enough to be able to handle the huge assembly that we currently have: The snapshot currently on my machine
contains 15,596 classes, featuring a total of 191,522 X++ methods. In this light | have the following questions:

Turns out they were ~700K methods
Overloads, automatically generated

Analysis took 3h on a Xeon
Output: 116Mb text file
Cache file: 610Mb

Found new bugs

Scaling up

ﬁ Brett Shearer WiseTechGlobal (50
Real code bases are huge™

A I'm really sorry to push, can we get a drop that contains this fix.

. that are ALL in multiple project solutions.

Viote As
Helpful All our developers are reporting this problem to me today..

Should cope with it
Myths:
“I am modular, hence | scale up”
“| analyze in < 1sec, hence | scale up”

Clousot on the huge assembly

No inter-method inference

Quadratic in #methods

y =14.171x% + 228.64x + 434.02 »

Why???
GC? //
DB? —
If the app runs long enough, the GC/DB commmmﬁ%
Intra-method can be costly =

Nested loops, goto ... -

Scaling up: Our experience

Avoid complexity
vcostly corner case, 3user who will hit it

Be incremental

Analysis time should be proportional to changes
Reduce annotation overhead

Avoid boredom of trivial annotations

Save programmer time
Prioritize

Not all the warnings are the same...

Clousot Overview

| Checkng

e
o i B B

Clousot Main Loop

Read Bytecode, Contracts

vassembly, vmodule, Vtype, vmethod
%> Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions , repairs
Propagate inferred contracts

Examples of Proof Obligations

result >= 0

Proof obligations collection

In theory, collect all the proof obligations
Language: non-null, div-by-0, bounds ...
User supplied: contracts, assert ...

In practice, too many language obligations

Non-null, div-by-0, various overflows, array/buffer overruns, enums, floating
point precision

Let the user chose and focus

Clousot Main Loop

Read Bytecode, Contracts

vassembly, vmodule, Vtype, vmethod
Collect the proof obligations
©» Analyze the method, discover facts
Check the facts
Report outcomes, suggestions , repairs
Propagate inferred contracts

Static Analysis

Goal: Discover facts on the program

Challenges:

Precise analysis of IL
Compilation lose structure

Which properties are interesting?
Which abstract domains should we use?
How we make them practical enough?

Performance
Usability
E.g. No templates

PreCISe I L An aIySIS E:ivgzri(izz i; {return this.f + x;}

smethod public hidebysig instance int32 Sum(int32 %) cil managed

{ sO
.maxstack 2 sO
Jocals init sl
[0] int32 CS$150000) sO sO sl
L_0000: nop
L_0001: Idarg.0 sO
L_0002: Idfld int32 Bag.MonMNegativelist:f
L_0007: Idarg.l
L_000&: add
L_0009: stlocO
L_000a: br.s L_000c
L_000c: |dloc.0
L_000d: ret
1
sv11 (13)
sv13 (15) sv11 (13)
sv8 (10)
sv22 (24) sv13 (15) Add sv8 (10) (sv13 (15) Add sv8 (10))
sv22 (24)

Disassembler
R e B I it 1 o o
numl0 += {G{numé, num7, num8) + blockDWords[5]) + 0x7abd76e9; A
X numld = ((numld << 6) | (numl0 »> ila)) + num®; O MDTr\anS-FO r‘m In mscorllb-dll
num7 = (num7 << 10) | (num7 »> 0x16); |
Aumd += (G{pum10, numb, num7) + blockDWords[12]) + 0x7a6d76e9; - " - -
runa (s <3 > 07 9000 straight line instructions
numé = (numb << 10) | (numé == 0x16);
num8 += (G{num2, num10, numb) + blockDWords[2]) + 0x7abd76e9;
numé = ((num8 << 12} | (num8 > > 20)) + numT;
numll = (numld << 10} | (numld > > Dx16);
num7 += (G{num&, num3, numld) + blockDWords[13]) + 0x7a6d76e9;
num? = ((num7 =< 9] | (num7 >> (:17)) + numé;
numg = (num? << 10) | (num9 == 0x16);
numb += (G{num7, num8, num3) + blockD'Words[9]) + 0x7abd76e9;
numé = ((numb << 12} | (numb > > 20)) + numl0;
numé = (numi << 10) | (num8 »> 0x16);
numld += (G(numé, num7, num8) + blockDWords[7]) + (xTabd76e3;
numl0 = ((humld << 5) | (numl0 > > Oxlb)) + num®;
num? = (num7 << 10) | (num7 == 0x16);
num@ += (G{numl10, numb, num7) + blockDWords[10]) + 0x7abd76e9;
numd = ((num3 << 15) | (num3 » > 0x11)) + num§;
numé = (numb << 10) | (numb = > 0x16);
numé += (G{num9, numl0, numb) + blockDWords[14]) + 0x7a6d76e9;
num@ = ((numg << 8) | (num8 > > (:18)) + numT;
numld = (numl0 << 10) | (numl0 == 0:x16); /
num7 += F{num&, num3, numl0) + blockDWords[12]:
num? = ((num7 << 8) | (num7 >> (:18)) + numb;
numd = (num3 << 10) | (num8 » > 0x16);
numé += F{num7, num8, num3) + blockDWords[15];
numé = {(numb << 5) | (numé6 >> Gd b)) + numl0;
num@ = (num8 << 10) | (num@ > > Dx16);
numl0 += F(num@, num7, numg) + blockDWords[10]:
numld = ((numld <<12) | (numl0 == 20)) + num;
num? = (num7 << 10) | (num7 »> 0x16);
num? += F{numld, numé, num7) + blockD'Words[4];
num@ = ((num3 << 3) | (num3 >> (:A7)) + numé;
numé = (numb << 10) | (numé > > 0x16);
numé += F{num3, numl0, numé) + blockD'Words[1];
num@ = ((num8 << 12) | (num8 == 20)) + num7;
ruml = (numld << 10} | (numlQ == Ox16);
num7 += F{num8&, num3, numl0} + blockD'Words[5];
num7 = ({(num7 << 5) | (num7 =>> (:d b)) + numé;
num@ = (num3 << 10) | (num? »> 0x16);
numé += F(num7, num8, num) + blockDWords[8];
numé = ((numé << 14} | (humb > > 0:12)) + numl0;
num@ = (num8 << 10) | (numé == 0x16);
numl0 += F{numb, num7, numg) + blockD'Words[7];
numld = ({numld << 6) | (numl0 »> kla)) + num3;

num7 = (num7 << 10) | (num7 »> 0x16);
Anmd + = Finoum1N anmf nnm T+ hlnckMdard<l/R1

Which Abstract Domains?

Which properties?

Exploratory study inspecting BCL sources

Existing parameter validation
Mainly Non-null, range checking, types
Types no more issue with Generics introduction

Well studied problems

Plenty of numerical abstract domains
Intervals, Octagons, Octahedra, Polyhedra ...

Problem solved??

Myth

“For NaN checking only one bit is required!*

public double Sub(double x, double y)

{
Contract.Requires(!Double.IsNaN(x));

Contract.Requires(!Double.IsNaN(y));
Contract.Ensures(!Double.IsNaN(Contract.Result<double>()));

return x - vy;

}

Myth (popular in types)

“I should prove x = null, so | can simply use a non-null type
system”

public void NonNull()
{

string foo

null;

for (int i = @; 1 < 5; i++)
{

foo += "foo";

}

Contract.Assert(foo != null);

¥

Numerical domains in Clousot

Numerical information needed everywhere
Ranges, enums, V/3, contracts, code repairs ...

Core of Clousot

Several new numerical abstract domains

DislIntervals, Pentagons, SubPolyhedra ...
Infinite height, no finite abstraction

Combined by reduced product
Incremental application
Validated by experience

V/3 abstract domain

Instance of FunArray (POPL'11)

Discover collection segments & contents
public int Max(int[] arr)

{

}

var max = arr[0];
for (var i = 1; 1 < arr.Length; i++)

{

var el = arr[i];

if (el > max) max = el; (30n1pactfqr: 4 _
} V). 0<) <i:arrfj] £ max A
3 k. 0 =k <i: a[k] = max A

return max; | < arr.Length A

1<

Other abstract domains

Heap, un-interpreted functions
Optimistic parameter aliasing hypotheses

Non-Null
A reference is null, non-null, non-null-if-boxed

Enum
Precise tracking of enum variables (ints at IL)

Intervals of floats, actual float types
To prove NaN, comparisons

Array purity

Clousot Main Loop

Read Bytecode, Contracts

vassembly, vmodule, Vtype, vmethod
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions, repairs
Propagate inferred contracts

Checking

For each proof obligation (pc, ¢)
Check if Facts@pc E ¢

Four possible outcomes
True, correct
False, definite error
Bottom, assertion unreached
Top, we do not know

In the first 3 cases we are happy

Why Top?

The analysis is not precise enough

Abstract domain not precise
Re-analyze with more precise abstract domain

Algorithmic properties
Implementation bug
Incompleteness

Some contract is missing
Pre/Postcondition, Assumption, Object-invariant

The assertion is sometimes wrong (bug!)
Can we repair the code?

Dealing with Top

Every static analysis has to deal with Tops
a.k.a. warnings

Just report warnings: overkilling

Explain warnings: better
Still expensive, programmer should find a fix
EX. no inter-method inference:

Checked 2 147 956 assertions: 1 816 023 correct 331 904 unknown 29 false
Inspecting 1 warning/sec, 24/24. 230 days

Suggest code repairs: even better
But, there still we be warnings: rank & filter

Clousot Main Loop

Read Bytecode, Contracts

vassembly, vmodule, Vtype, vmethod
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions, repairs
Propagate inferred contracts

Precondition inference

What is a precondition?

{P} C {Q}

So we have a solution?

{wp[C]Q} C {Q}
WP rule out good runs

public static void WPex(int[] a)

l-()()F)E; are a [)F()t)|€3[11 { for (var i = @; i <= a.Length; i++)
Loop invariant = No “weakest” precondition i - 11

Inference of sufficient preconditions 1 (onbet) return;
}

Necessary conditions

Our approach: Infer necessary conditions

Requirements
No new run is introduced
No good run is eliminated
Therefore, only bad runs are eliminated

Analyses infer B, , necessary condition at pc
If B, does not hold at pc, program will crash later
By IS NECESSAry precondition

Leverage them to code repairs

Verified Code Repairs

Semantically justified program repair

Contracts
Pre/post-conditions, object invariants inference

Bad initialization
Guards

Buffer overrun
Arithmetic overflow

Inferred by static analysis
Extracted by abstract states

Some data

Library Asserts Validated Warnings|Repairs Time|Ass. w. repairs %
Un-annotaisysten.windows.forms| 154,845 136,667 18,178| 24,048 1:18 16,498 90.7
mscorlib 110,236 97,107 13.,129| 26,166 0:59 10,576 80.6
system 97,617 85,934 11.683| 15,120 0:53 9,518 81.4
system.core 34.031 29,569 4.462(6914 0:26 3.599 80.6
custommarshaler 439 376 61 65 0:00 48 787
Total 397.168 349,655 47.513|47.513 3:36 40,239 84.7

SuggeSt a repalr >4/5 Of tl mes As noted, two of the projects had a large number of unsuppressed warnings. The number of

unsuppressed warnings in the other projects is typically zero. |tend to treat all warnings as issues that

If applled : preCISlon ralses 88%_)9 must be resolved before deployment (not quite “warnings as errors”, but close). | don't often use

SuppressMessage or ContractVerification(false) attributes. | prefer Assert and Assume whenever

Precision: % of validated assertici>2™*
Annotated libraries: usually ~100%

And for the other Tops?

Make buckets
Related warnings go together

Rank them

Give each warning a score
f(Outcome, warning kind, semantic info)

Enable suppression via attribute
Particular warning, family of warnings
Preconditions at-call, object invariants
Inherited postconditions

More?

Integrate in Roslyn CTP

Design time warnings, fixes, semantic refactoring, deep program
understandirs

public int Decrement(int x)
el SMETE

{
Contract.Requires(x »= 5);
Contract.Ensures(Contract.Result<int>() >= @);
while (x != @) x--;
} Bxtract Methed public int Decrement(int x)
{
Extract method with Contracts Contract.Requires(x >= 5); .
Contract.Ensures{Contract.Result<int>() »>= @);
x = NewMethod(x);
return x;
h
int NewMethod(int x)
i

Contract.Requires(@ <= x);
Contract.Ensures{Contract.Result<System.Int32>({) == a@);

while {x != 8) x--;
return x;

Conclusions

“Verification” only a part of the verified software goal

Other facets
Scalable & incremental

Programmer support & aid
Inference
Automatic code repairs

IDE support
Refactoring, focus verification efforts

Try Clousot today!

Avallable In VS Gallerytm

VS 2012 Integration
Runtime checking
Documentation generation
Post-build static analysis
Scale via team shared SQL DB

All
Controls
Samples
Templates
SDKs
Tools

P Online

¥ Updates (1)

HOME SAMPLES LANGUAGES

Extensions > Tools > Code Contracts for NET

Code Contracts for .NET

Code Contracts are static library methods used from any .NET program to specify the code's behavior.
Runtime checking and static checking tools are both provided for taking advantage of contracts.

CREATED BY RISE (Research in Software
Engineering) (Microsoft)

REVIEWS

e

4 Installed

Name: Ascending = Search Installed (Ctri+E)

Code Contracts Editor Extensions V52012
Displays Code Contracts (when editing C#} in code, Intellisense, and in

retadats files. Version: 156050211

More Infarmation
Code Contracts Tools

Tools to instrument and statically analyze NET code
with CodeContracts

Microsoft Web Developer Tools
Provides the latest Web Developer Tools for ASP.NET

NuGet Package Manager
A collection of tosls to automate the process of downloading, installing,
upgrading, configuring, and removing packages from a VS Project.

Visual Studio Extensions for Windows Library for JavaScr...
Development resources for the controls, CSS styles, and helper functions
that are included in the Windows Library for JavaScript,

You need to use the Programs and
Features pane in the Windows Control
Panel to remove this extension.

Search Visual Studio with Bing

Created by: Microsoft Research — .
res, ensures, invariant, assume, assert, static checker

ktensively and they have added value in discovering bugs
lseful for static analysis), preventing bugs {by making it

for you methods and types, so other devs easily know
oesn't}, and accelerating the resolution of bugs (with the
u catch issues usually much closer to where the bug
causing damage - like where an exception is thrown;

s because this method doesn't handle the case where p=5
e code a bit because we've got no idea if this is a bug in
it's a bug in the caller which shouldn't ever /pass/ p=5 —
documented with code contracts).

antracts against an intetface saves me code in multiple
implementations as well as keeping changes to rules in a single place, This is the best kept secret of
the .NET world - more people should use this,

