
CodeContracts &
Clousot
Francesco Logozzo - Microsoft
Mehdi Bouaziz – ENS

CodeContracts?
Specify code with code

Advantages
Language agnostic

No new language/compiler …

Leverage existing tools
IDE, Compiler …

Disadvantages
Lost beauty

public virtual int Calculate(object x) {
Contract.Requires(x != null);
Contract.Ensures(Contract.Result<int>() >= 0);

CodeContracts tools
Documentation generator

MSDN-like documentation generation
VS plugin – tooltips as you write

Runtime checking
Postconditions, inheritance …
Via binary rewriting

Static checking
Based on abstract interpretation
This talk!!!!

CodeContracts impact
API .NET standard since v4

Externally available
~100,000 downloads
Active forum (>7,700 msg)
Book chapters, blogs …

Internal and External adoption
Mainly professional
A few university courses

Publications, talks, tutorials
Academic, Programmers conferences

Let’s demo!

Why abstract interpretation?
Traditional verification workflow

Verification tool based on
Weakest preconditions
Symbolic execution
Model checking

Fix the code?
Understand the warnings

Add missing specifications
Pre/Post-conditions, Object/Loop invariants
Assumptions

Environment, external code, OS …

Verifier limits
Incompleteness….

Fix bugs?
Tough task verifying a program with bugs…

Tedious and expensive process

Reality is a little bit different

New features, regressions, refactoring …

Help programmer, not drown her
“Verification” is only one facet
Should support correct SW development

Why Abstract interpretation?
Focus on properties of interest

Few programmers interested in ∀∃∀…
Null dereferences a lot more relevant!

Programmer friendly, Tunable, Precise
Easy to explain what’s wrong
Properties known ahead of time

“Reverse engineered” by some users

Infer, not deduce or search
Loop invariants, contracts, code fixes …

The power of inference
public int Max(int[] arr)
{
var max = arr[0];
for (var i = 1; i < arr.Length; i++)
{
var el = arr[i];
if (el > max)
max = el;

}

return max;
}

public int Max(int[] arr)
{
Contract.Requires(arr != null);
Contract.Requires(arr.Length > 0);
Contract.Ensures(Contract.ForAll(0, arr.Length, j => arr[j] <= Contract.Result<int>()));
Contract.Ensures(Contract.Exists(0, arr.Length, j => arr[j] == Contract.Result<int>()));

var max = arr[0];
for (var i = 1; i < arr.Length; i++)
{
Contract.Assert(1 <= i);
Contract.Assert(Contract.ForAll(0, i, j => arr[j] <= max));
Contract.Assert(Contract.Exists(0, i, j => arr[j] == max));
var el = arr[i];
if (el > max)
max = el;

}

return max;
}

public int Max(int[] arr)
{
var max = arr[0];
for (var i = 1; i < arr.Length; i++)
{
var el = arr[i];
if (el > max)
max = el;

}

return max;
}

Code Repairs
int BinarySearch(int[] array, int value)
{

Contract.Requires(array != null);
var inf = 0;
var sup = array.Length - 1;

while (inf <= sup)
{

var index = (inf + sup) / 2;
var mid = array[index];

if (value == mid) return index;
if (mid < value) inf = index + 1;
else sup = index - 1;

}
return -1;

}

Scaling up
Real code bases are huge

Turns out they were ~700K methods
Overloads, automatically generated

Analysis took 3h on a Xeon
Output: 116Mb text file
Cache file: 610Mb

Found new bugs

Scaling up
Real code bases are huge

Should cope with it

Myths:

“I am modular, hence I scale up”

“I analyze in < 1sec, hence I scale up”

Clousot on the huge assembly
No inter-method inference

Quadratic in #methods

Why???
GC?
DB?

If the app runs long enough, the GC/DB complexity matters

Intra-method can be costly
Nested loops, goto …

y = 14.171x2 + 228.64x + 434.02

#methods

Scaling up: Our experience
Avoid complexity
∀costly corner case, ∃user who will hit it

Be incremental
Analysis time should be proportional to changes

Reduce annotation overhead
Avoid boredom of trivial annotations
Save programmer time

Prioritize
Not all the warnings are the same…

Clousot Overview

Inference

Checking

Reporting

Clousot Main Loop
Read Bytecode, Contracts

∀assembly, ∀module, ∀type, ∀method
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions , repairs
Propagate inferred contracts

Examples of Proof Obligations
public int Div(int x, int y)
{
return x / y;

}

public int Abs(int x)
{
Contract.Ensures(Contract.Result<int>() >= 0);
return x < 0 ? -x : x;

}

y != 0

x != MinValue || y != -1

x != MinValue
result >= 0

Proof obligations collection
In theory, collect all the proof obligations

Language: non-null, div-by-0, bounds …
User supplied: contracts, assert …

In practice, too many language obligations
Non-null, div-by-0, various overflows, array/buffer overruns, enums, floating
point precision ….

Let the user chose and focus

Clousot Main Loop
Read Bytecode, Contracts

∀assembly, ∀module, ∀type, ∀method
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions , repairs
Propagate inferred contracts

Static Analysis
Goal: Discover facts on the program

Challenges:
Precise analysis of IL

Compilation lose structure

Which properties are interesting?
Which abstract domains should we use?
How we make them practical enough?

Performance
Usability

E.g. No templates

Precise IL Analysis private int f;
int Sum(int x) {return this.f + x;}

s0 = ldarg this
s0 = ldfld Bag.NonNegativeList.f s0
s1 = ldarg x
s0 = s0 Add s1
nop
ret s0

sv11 (13) = ldarg this
sv13 (15) = ldfld Bag.NonNegativeList.f sv11 (13)
sv8 (10) = ldarg x
sv22 (24) = sv13 (15) Add sv8 (10)
ret sv22 (24)

sv11 (13) = ldarg this
sv13 (15) = ldfld Bag.NonNegativeList.f sv11 (13)
sv8 (10) = ldarg x
sv22 (24) = sv13 (15) Add sv8 (10)
ret (sv13 (15) Add sv8 (10))

Expression Recovery is lazyMDTransform in mscorlib.dll
9000 straight line instructions

Which Abstract Domains?
Which properties?

Exploratory study inspecting BCL sources
Existing parameter validation

Mainly Non-null, range checking, types
Types no more issue with Generics introduction

Well studied problems
Plenty of numerical abstract domains
Intervals, Octagons, Octahedra, Polyhedra …

Problem solved??

Myth
“For NaN checking only one bit is required!“

public double Sub(double x, double y)
{
Contract.Requires(!Double.IsNaN(x));
Contract.Requires(!Double.IsNaN(y));
Contract.Ensures(!Double.IsNaN(Contract.Result<double>()));

return x - y;
}

-∞ -∞ =
NaN

Myth (popular in types)
“I should prove x != null, so I can simply use a non-null type

system”
public void NonNull()
{
string foo = null;

for (int i = 0; i < 5; i++)
{
foo += "foo";

}
Contract.Assert(foo != null);

}

Numerical domains in Clousot
Numerical information needed everywhere

Ranges, enums, ∀/∃, contracts, code repairs …

Core of Clousot

Several new numerical abstract domains
DisIntervals, Pentagons, SubPolyhedra …

Infinite height, no finite abstraction

Combined by reduced product

Incremental application

Validated by experience

/ abstract domain
Instance of FunArray (POPL’11)

Discover collection segments & contents
public int Max(int[] arr)
{
var max = arr[0];
for (var i = 1; i < arr.Length; i++)
{

var el = arr[i];
if (el > max) max = el;

}

return max;
}

{0}
<= max,
∃= max

{i} Top {arr.Length}?

Compact for:
∀ j. 0≤ j < i: arr[j] ≤ max ∧
∃ k. 0 ≤ k <i: a[k] = max ∧
i ≤ arr.Length ∧
1≤ i

Other abstract domains
Heap, un-interpreted functions

Optimistic parameter aliasing hypotheses

Non-Null
A reference is null, non-null, non-null-if-boxed

Enum
Precise tracking of enum variables (ints at IL)

Intervals of floats, actual float types
To prove NaN, comparisons

Array purity

…

Clousot Main Loop
Read Bytecode, Contracts

∀assembly, ∀module, ∀type, ∀method
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions, repairs
Propagate inferred contracts

Checking
For each proof obligation 〈 pc, ϕ 〉

Check if Facts@pc ⊨ ϕ

Four possible outcomes
True, correct
False, definite error
Bottom, assertion unreached
Top, we do not know

In the first 3 cases we are happy

Why Top?
The analysis is not precise enough

Abstract domain not precise
Re-analyze with more precise abstract domain

Algorithmic properties
Implementation bug
Incompleteness

Some contract is missing
Pre/Postcondition, Assumption, Object-invariant

The assertion is sometimes wrong (bug!)
Can we repair the code?

Dealing with Top
Every static analysis has to deal with Tops

a.k.a. warnings

Just report warnings: overkilling

Explain warnings: better
Still expensive, programmer should find a fix
Ex. no inter-method inference:

Checked 2 147 956 assertions: 1 816 023 correct 331 904 unknown 29 false

Inspecting 1 warning/sec, 24/24: 230 days

Suggest code repairs: even better

But, there still we be warnings: rank & filter

Clousot Main Loop
Read Bytecode, Contracts

∀assembly, ∀module, ∀type, ∀method
Collect the proof obligations
Analyze the method, discover facts
Check the facts
Report outcomes, suggestions, repairs
Propagate inferred contracts

Precondition inference
What is a precondition?

{P} C {Q}

So we have a solution?

{wp⟦C⟧Q} C {Q}

WP rule out good runs

Loops are a problem
Loop invariant ⇒ No “weakest” precondition
Inference of sufficient preconditions

public static void WPex(int[] a)
{
for (var i = 0; i <= a.Length; i++)
{
a[i] = 11;
if (NonDet()) return;

}
}

Necessary conditions
Our approach: Infer necessary conditions

Requirements
No new run is introduced
No good run is eliminated
Therefore, only bad runs are eliminated

Analyses infer �pc , necessary condition at pc
If �pc does not hold at pc, program will crash later
�entry is necessary precondition

Leverage them to code repairs

Verified Code Repairs
Semantically justified program repair

Contracts
Pre/post-conditions, object invariants inference

Bad initialization
Guards
Buffer overrun
Arithmetic overflow
…

Inferred by static analysis

Extracted by abstract states

Some data
Un-annotated libraries

Suggest a repair >4/5 of times

If applied, precision raises 88%→98%
Precision: % of validated assertions

Annotated libraries: usually ~100%

And for the other Tops?
Make buckets

Related warnings go together

Rank them
Give each warning a score

f(Outcome, warning kind, semantic info)

Enable suppression via attribute
Particular warning, family of warnings
Preconditions at-call, object invariants
Inherited postconditions
…

More?
Integrate in Roslyn CTP

Design time warnings, fixes, semantic refactoring, deep program
understanding

Conclusions
“Verification” only a part of the verified software goal

Other facets
Scalable & incremental
Programmer support & aid

Inference
Automatic code repairs
IDE support

Refactoring, focus verification efforts

Try Clousot today!

Available in VS Gallery!
VS 2012 Integration
Runtime checking
Documentation generation

Post-build static analysis
Scale via team shared SQL DB

