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1 Introduction

Programs inevitably contain bugs. Fortunately, recent research and engineering
efforts across the industry and academia made significant advances in static
analysis techniques allowing automatic detection of bugs that cause a program
to crash or to produce an unintended result. In many settings, it is not enough for
a program to execute without errors. Programs must also finish executing within
expected resource bounds and adhere to a sensible resource usage. At the very
least, we expect the resource usage of programs to not deteriorate significantly
as the source code evolves, hurting the experience of the users or even making
the program unusable.

There are many static analysis techniques for estimating and verifying the
resource usage of a program, ranging from static worst-case execution time
(WCET) analyses (see [13] for a detailed survey) to typed-based approaches and
program logics [6, 2, 12, 10, 11, 7, 5]. Research in static WCET analysis has been
widely applied to validation and certification of embedded systems in safety crit-
ical systems. To estimate hard real-time bounds, these analyses must be tuned
carefully to take into account abstract models of caching, scheduling and pipeline
behavior of the embedded system. On the other hand, type based analyses and
program logics are often more abstract but require sophisticated type check-
ing/inference algorithms or specialized tools like proof assistants which make
them unsuitable to be used on big codebases without specialist proof engineers.

In our work, we turn our attention to big codebases for mobile applications.
We observe that although many static analysis techniques have been deployed to
detect functional correctness bugs, not much attention is given to statically de-
tecting performance regressions in industrial codebases. Most often, developers
in such codebases deal with performance regressions through dynamic analy-
sis techniques by relying on a combination of performance tests and profilers.
Considering that these applications are developed in a continuous way where
developers regularly add new features or modify existing code, only a limited
amount of testing and monitoring can effectively be done before the code runs
in production. Moreover, once a performance regression is introduced, it may
take several days or even weeks for it to be detected by production monitoring
systems. Once the regression is observed, tracking it back to its root cause is
also a very time consuming task: The release of an application has normally
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thousands of code changes and singling out the changes responsible for the per-
formance regression is like finding a “needle in the haystack”. This whole process
of identifying and fixing performance regressions is costly not only for the ap-
plication and its users, but also in terms of engineering time. In fact it requires
multiple developers to interact, coordinate, and finally verify that fix improves
the performance.

2 Static Complexity Analysis with Infer

Motivated by these issues, we have developed an inter-procedural static anal-
ysis technique to automatically detect a class of performance regressions early
in the development cycle. Our analysis is based on an abstract-interpretation
technique [3, 9] which computes symbolic upper bounds on the resource usage
of programs—execution cost being the main resource we consider. These costs
are expressed in terms of polynomials describing the asymptotic complexity of
procedures with respect to their input sizes. The main input of the analysis is
the source file which is then translated to an intermediate language along with
the control-flow graph of the program. The analysis then operates on this in-
termediate language in several phases: 1) a numerical value analysis based on
InferBo [1] computes value ranges for instructions accessing memory, 2) a loop
bound analysis determines upper bounds for the number of iterations of loops
and generates constraints for nodes in the control-flow graph, and 3) a constraint
solving step resolves the constraints generated in the second step and computes
an upper bound on the execution cost. The analysis assumes a simple sequential
model with an abstract cost semantics: each primitive instruction in the inter-
mediate language is assumed to incur a unit execution cost. The analysis is not
limited to inferring bounds for just execution cost. In order to statically detect
regressions in other types of resource usage, we have generalized the analysis to
account costs for different types of resources such as memory allocations.

3 Diff-time Deployment at Scale

We implemented the analysis on top of the Infer Static Analyser [8], which is used
at Facebook to detect various errors related to memory safety, concurrency, and
many more specialized errors suggested by Facebook developers. Infer hooks up
to the continuous integration mechanism with the internal code review system
where it is run on any code change (diff) over Facebook’s Android codebase [4,
8]. For our diff-based analysis, we rely on this mechanism and infer polynomial
bounds for the original and the updated procedures. Whenever there is an in-
crease in the degree of the complexity from the original to the modified version
(e.g. from constant to linear or from linear to quadratic), we report a warning
to the developer with a trace explaining where and how the complexity increase
occurred.

Since the tool was deployed, thousands of complexity increase warnings were
issued in Facebook’s Android codebase where hundreds of these were fixed before
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the code was committed. Unlike functional correctness bugs where fix-rate is a
good indicator of whether the issues found by the analyser are useful to the de-
veloper, we do not solely rely on fix-rate as a metric to measure the effectiveness
of asymptotic complexity increase signal. This is because, unsurprisingly, not all
complexity increase warnings point to an actual performance regression: a) the
complexity increase could be intended or the input sizes used in production could
be small enough to have no effect on the performance and b) the warning could
also be a false positive due to limitations of the analyzer. To alleviate these,
we follow a two-pronged approach. First, we ask developers to provide feedback
on whether a warning is good-catch, expected, or wrong (potentially pointing
to a false-positive). Only a small fraction of developers provide such feedback
but they are still useful: the most frequent feedback is that the warning was
expected. Wrong warnings are very rare (a few times a week) and we follow
up these warnings closely to fix weaknesses of the analyzer. Secondly, to help
developers evaluate the severity of the warning, we incorporate different types
of contextual information that surface e.g. whether the procedure with the com-
plexity increase runs on the critical path or main (UI) thread, which critical user
interactions the procedure occurs on, and some dynamic profiling info (e.g. avg
CPU time of the original procedure) when available. We observe that warnings
with such contextual information are fixed (and marked as good-catch) more
frequently in comparison to vanilla complexity increase warnings.

Thanks to the compositional nature of the analysis that enables us to gener-
ate execution costs of procedures independently of calling contexts, it can scale
to large codebases and work incrementally on frequent code modifications. We
believe that there is much unlocked potential and future work opportunities for
applying this type of static performance analysis. Although not all complexity in-
crease signal could be considered an actual performance regression, we observed
that surfacing them to developers is still useful for code quality and regression
prevention.

We are currently working on extending the analysis to detect out-of-memory
errors, combining static analysis with dynamic techniques, and adding support
for handling other languages such as C++ and Objective-C.
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