
Cloudot
Lifting Clousot into the Cloud

Mehdi Bouaziz



Clousot today
• Runs on a single core on the developer box
• Input: assemblies + contracts
• The analysis

• Order the methods according to the call-order
• Analyze bottom up
• Infer postconditions, necessary preconditions, and object invariants
• Report warnings and verified code fixes

• Analysis of methods is sequential



The Goal
• Bring Clousot into the Cloud

Why?

• Exploit the massive number of processors and memory
• Faster and more precise analysis

• Faster? Because methods are analyzed in parallel
• More precise? See demo!



Let’s Demo!



Parallelization
• What we parallelize?

• The analysis of a single method?
• Past experience: no gain in performance
• Too much time lost in synchronization/abstractions/…

• My internship: Parallelize the analysis of the methods
• Re-architecture of Clousot to make it distributed

• Workers (analyzing methods) can be local or remote
• Provide a structure (services) that can be easily ported to Windows Azure



High level algorithm for Cloudot
• Slice the input assembly into smaller assemblies

• The minimum analyzable units

• Slices are pushed into a queue
• Workers pop slices from the queue and analyze them (as usual)
• Results are written into a shared database

• Including the new inferred contracts

• All the dependent methods are re-added to the queue



Theory: Chaotic Asynchronous iterations
• We do not compute an order on methods anymore 
• Method analyses are chaotic and asynchronous

• No synchronization!

• Compute a global greatest fixpoint (gfp)
• Method contracts are (Top, Top) at the beginning and then refined

• Is it really the gfp? 
• Th. [Cousot78] If the analyses are monotonic then it is the gfp
• Are our analyses monotonic?



Theory: Monotonicity…
• No, we do not have it. Two reasons:

• Widening
• Absence of best abstraction

• Issue also for finite domains

• Have examples where inlining is less precise than modular analysis!
• Problem can be remediated by forcing monotonicity
• We can formalize all of this with nice Greek letters ;-)



Back to practice: Services
• Same interface for all consumers
• Based on WCF (magic for Francesco)
• Can be hosted in:

• A console, for debugging
• A Windows service, for the Visual Studio extension

• Speeds up small analyses by saving on Clousot initialization time (4 sec)
• Our regression tests went 2x faster, without parallelization

• A Web service, for RiSE for fun
• A cluster or a cloud, for larger analyses



Slicer
• Goal: do not ship a big dll file to analyze just a part of it
• Given a .Net assembly and a set of methods M, generate a smaller 

analyzable assembly containing:
• The methods M
• Fake versions of types/methods/properties/fields visible from M
• Their contracts, object invariants, contract classes
• Debugging information (pdb file)



Queue
• When we want to add a slice to the queue

• Compute a snapshot: basically a hash of the inferred contracts found by prior 
analyses on the methods it depends on

• If not already computed -> add it to the todo list
• Remove all previous versions of this slice from the todo list

• Prioritize the queue as you want: FIFO, smallest, fastest slices first, 
etc.



Conclusions & Future
• Cloudot: a distributed version of Clousot
• Port it in the cloud: Azure? Amazon EC2? …?

• How difficult to port a .NET service into Azure?

• Balance slices using timing information from fixpoint computation
• Use inferred pre-state and post-state, object invariants (my prev. 

internship)

• Experience on large assemblies (Dynamics)
• …
• Write a paper



Thank you!
In particular to Mike Barnett for all the hard work on the slicer!


