
NSAD 2012

TreeKs: A Functor to make Numerical
Abstract Domains Scalable

Mehdi Bouaziz1

DI - École normale supérieure
45 rue d’Ulm

75230 Paris Cedex 05 - France

Abstract

Relational numerical abstract domains do not scale up. To ensure a linear cost of abstract domains,
abstract interpretation-based tools analyzing large programs generally split the set of variables into
independent smaller sets, sometimes sharing some non-relational information. We present a way to
gain precision by keeping fully expressive relations between the subsets of variables, whilst retaining
a linear complexity ensuring scalability.

Keywords: Abstract interpretation, abstract numerical domains, weakly relational domains.

1 Motivation

Abstract interpretation [4] is a theory of sound approximation of semantics
of programming languages, mainly used in static analysis and verification of
programs. A crucial point when designing an abstract interpretation-based
analyzer is the choice of suitable abstract domains.

The domain of intervals was presented as one of the first abstract do-
mains [3]. Although, even when the properties of interest are expressible
with intervals, relational properties may be needed to compute them pre-
cisely. Shortly after, some of the limitations of intervals were overcome thanks
to the domain of polyhedra [6]. While very precise, polyhedra are too costly
and cannot be reasonably used to analyze programs with more than a few
variables. Since then, numerous numerical abstract domains were designed

1 Email: mehdi.bouaziz@ens.fr
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.com/locate/entcs

mailto:mehdi.bouaziz@ens.fr

Bouaziz

to capture various properties, among them linear inequalities. Weakly rela-
tional domains restrict the shape of representable relations to achieve better
computation times than polyhedra.

Between intervals and polyhedra, one can now find: pentagons [11], zones
(or DBM) [12], weighted hexagons [8], octagons [13], logahedra [9], TVPI [16],
octahedra [2], and templates [14].

Even the operations of the pentagon domain have a quadratic cost 2 , which
does not scale up [1,5]. Only a cost close to linear is acceptable when it comes
to analyzing large programs.

Instead of looking for other shapes of relations, an orthogonal axis of re-
search to the everlasting cost-precision trade-off is to modify the constraint
graph (Def. 3.3), i.e., to restrain the set of variables between which there can
be relations.

This idea has already been applied in Astree [1,5] and in C Global Sur-
veyor [17], both analyzing large avionic and aerospace C programs. The set
of variables is divided into several subsets called packs on which operators of
the octagon domain are applied independently. However only non-relational
information (i.e., intervals) are shared between packs.

The paper makes the following contributions:

- Several existing numerical domains are grouped together and generalized
into a theoretical framework of linear inequality domains (Sect. 2).

- A domain functor (TreeKs, Sect. 3) is defined. It can be applied to any lin-
ear inequality domain to make a new scalable domain. The set of relations
expressible in the new domain is a subset of those expressible in the under-
lying domain. The restriction is not made on the shape of the relations but
on the variables between which the relations are defined.

- Taking advantage of the specific shape of the relation graph, an efficient
completion algorithm (Sect. 4) for TreeKs domains is presented, along with
its correctness proof. If packs are kept bounded, the cost of the domain
remains linear.

- Finally, efficient algorithms (Sect. 5) are given for other operations required
by abstraction interpretation.

2 Linear Inequality Domains

In this section we present theoretical properties of linear inequality domains,
on which we will be able to apply our functor in the next section. This
generalizes the work of Simon, King, and Howe on TVPI [16]

2 The cost of a domain is the amortized complexity, in the number of variables, of its oper-
ations. For weakly relational domain, this cost is dominated by the cost of the completion.

2

Bouaziz

Let V def
= {X1, . . . , XN} be a finite set of variables over Q. Let Q? def

= Q\{0}
denote non-zero and Q?

+
def
= {x ∈ Q |x > 0} positive rational numbers.

Let S{n} denote the set of n-tuples made of members of S. If S is a set of
tuples, let Q?S

def
= {〈qx1, . . . , qxk〉 | 〈x1, . . . , xk〉 ∈ S, q ∈ Q?} denote the scalar

multiplication of all members of S by a scalar of Q?.

Definition 2.1 A base set D of a linear inequality domain is a subset of⋃
i≥1(Q?){i} closed by subset and closed by multiplication by a positive scalar

of Q?
+. It is said to be k-relational if it is a subset of

⋃k
i=1(Q?){i}.

Base sets of known linear inequality domains are the following:

Intervals
def
= (Q?){1}

Zones
def
= (Q?){1} ∪Q? {〈1,−1〉}

Octagons
def
= (Q?){1} ∪Q? {〈1,−1〉 , 〈1, 1〉}

LogahedraB
def
= (Q?){1} ∪Q?

{〈
±1,±2k

〉 ∣∣−B ≤ k ≤ B
}

with B ∈ N ∪ {+∞}
TVPI

def
= (Q?){1} ∪ (Q?){2}

Octahedra
def
=
⋃
k≥1

Q? {−1, 1}{k}

Polyhedra
def
=
⋃
k≥1

(Q?){k}

Definition 2.2 The set of inequalities (or relations, or constraints) of a do-
main based on D over the set of variables V is defined:

DV
def
= {True,False} ∪

⋃
k≥1

{
k∑

i=1

aixi ≤ d

∣∣∣∣∣ 〈a1, . . . , ak〉 ∈ D , xi ∈ V , d ∈ Q

}

with True
def
= 0 ≤ 1 and False

def
= 0 ≤ −1.

Definition 2.3 The set of values of a domain based on D over the set of
variables V is defined by DV

def
= Pf (DV), the finite sets of constraints of DV .

Definition 2.4 If c =
∑n

i=1 aixi ≤ d, and if c 6≡ True and c 6≡ False, then
the concretization of c is a half-space of QN , the set of values satisfying the
constraint c:

〚c〛 def
=

{
(U1, . . . , UN) ∈ QN

∣∣∣∣∣
n∑

i=1

aiui ≤ d, xj = Xi ⇒ uj = Ui

}

〚∅〛 = 〚{True}〛 = 〚True〛 def
= QN 〚False〛 def

= ∅
The concretization of a value C = {c1, . . . , cn} is the intersection of the

concretization of its members 〚C〛 def
=
⋂n

i=1 〚ci〛.

3

Bouaziz

Definition 2.5 The set of values DV is ordered by entailment : C1 � C2
def⇐⇒

〚C1〛 ⊆ 〚C2〛. Equivalence is defined as C1 ≡ C2
def⇐⇒ C1 � C2 and C2 � C1.

Definition 2.6 The variables of a linear inequality is the set of variables for
which the coefficient is not zero. If c = a0X0+. . .+aNXN ≤ d, then vars(c) def

=

{Xi ∈ V | ai 6= 0}. For a set of linear inequalities, vars(C)
def
=
⋃

c∈C vars(c).

Definition 2.7 Let X ⊆ V be a set of variables, the restriction of a value to
this set of variables is defined: πX (C)

def
= {c ∈ C | vars(c) ⊆ X}.

Definition 2.8 A forget operator (or projection operator) of DV is a mapping
∃ : P(V) −→ DVDV such that ∀C1 ∈ DV , ∀X = {Xi1 , . . . , Xin} ⊆ V , we have
∃X (C1) = C2 such that vars(C2) ⊆ V \ X and

〚C2〛 = {(u1, . . . , ui1−1, a1, ui1+1, . . . , uin−1, an, uin+1, . . . , uN)

| a1, . . . , an ∈ Q, (u1, . . . , uN) ∈ 〚C1〛}

Definition 2.9 A domain DV is stable by elimination of variables if ∀ c1, c2 ∈
DV such that c1 =

∑N
i=1 aiXi ≤ d1, c2 =

∑N
i=1 biXi ≤ d2 and if ∃ j such that

1 ≤ j ≤ N , aj < 0 and bj > 0, we have (bjc1 + ajc2) ∈ DV .
The domains Intervals , Zones , Octagons , Logahedra∞, T VPI as well as

Polyhedra are stable by elimination of variables.
If |V| ≥ 3 then the domains Octahedra and LogahedraB with 1 ≤ B <∞

are not stable by elimination of variables 3 4 .
If DV is stable by elimination of variables then Fourier-Motzkin elimination

is a forget operator.

Abstraction
There is no best abstraction on Q (e.g., for X×X ≤ 2). We will call ᾱ the

partial abstraction defined, when it makes sense, by the topological closure of
the convex hull.

Definition 2.10 The intersection between values ofDV is exact and is defined
by the union of the inequalities set: C1 uDV C2

def
= C1 ∪ C2.

The union between values is defined as the best abstraction: C1 tDV C2
def
=

ᾱ(〚C1〛 ∪ 〚C2〛) 5 .

The set (DV/≡,�,tDV ,uDV ,False,True) is a lattice.

3 Indeed X1+X2 ≤ 0 and −X1+X2+X3 ≤ 0 are in Octahedra but their sum 2X2+X3 ≤ 0
is not.
4 Indeed X1 − 2BX2 ≤ 0 and X2 − 2X3 ≤ 0 are in LogahedraB but their normalized sum
X1 − 2B+1X3 ≤ 0 is in LogahedraB+1 but not in LogahedraB .
5 Note that ᾱ is always defined for such an input since the union of a finite number of
polyhedra has a finite number of vertices and generators.

4

Bouaziz

3 The Domain Functor

In this section we build a new numerical abstract domain 6 based on an ex-
isting relational numerical domain, such as zones, octagons, logahedra, TVPI,
octahedra, or polyhedra. Note that our construction will also work for other
numerical domains that fall within the framework of the previous section.

3.1 Underlying Domain Properties

Suppose that the underlying domain is a numerical abstract domain over Q,
that is, it provides the following mathematical objects:
• a base set D 3 〈1,−1〉, i.e., the domain contains zones, in particular equal-
ities are representable,

• its associated domain DV , with a computer representation D of its members,
• an effective algorithm to compare abstract values,
• effective algorithms to compute: exact variable elimination ∃DV and inter-
section uDV , sound abstraction of union tDV , widening ODV and possibly
narrowing MDV .

3.2 Packs and Graphs

In order to ensure scalability to large variable sets, we want to restrain the
domain D to some chosen relations instead of all relations expressible in the
domain.

Definition 3.1 A pack set P = {P1, . . . , Pm |Pi ⊆ V} is a set of subsets of
variables of V , such that

⋃m
i=1 Pi = V , and for all i 6= j, we have Pi * Pj.

Definition 3.2 The pack graph is defined by GP
def
= (P, F) where (Pi, Pj) ∈ F

if and only if i 6= j and Pi ∩ Pj 6= ∅. We will call any non-empty set Pi ∩ Pj a
frontier.

Moreover we demand that the graph pack is a tree, i.e., there exists exactly
one path from a pack to another pack in this graph.

This implies that a variable only appears in at most two packs. To make
a variable appear in three packs P1, P2, P3 (in the pack graph P1—P2—P3),
we can make a copy of it in P2 and keep an equality constraint between these
two instances.

We will use the following variables: m def
= |P | ≤ N the number of packs; p def

=

max1≤i≤m |Pi| ≤ N the size of the largest pack; f def
= max1≤i<j≤m |Pi ∩ Pj| ≤ p

the size of the largest frontier; and d ≤ m the diameter of the pack tree.

6 Our domain is called TreeKs since, for a 2-relational underlying domain, the relation
graph (Def. 3.3) is a tree of complete graphs (generally denoted by K).

5

Bouaziz

3.3 The Functor

Given a underlying domain D and a pack set P , inequalities and values of our
new domain are respectively defined:

T reeKsD
P

def
= {c ∈ DV | ∃ i, vars(c) ⊆ Pi} TreeKsDP

def
= Pf (T reeKsD

P)

The set (TreeKsDP /≡,�,tTreeKsDP ,uDV ,False,True) is a lattice.

Definition 3.3 The constraint hypergraph of a value C of TreeKsDP is repre-
sentation with constraints stored in edges. It is defined by HP (C)

def
= (V , E, `)

where non-oriented hyperedges areE def
=
⋃m

i=1 {X ⊆ Pi | ∃ c ∈ DV , vars(c) = X}
and ` is a labelling of the hyperedges `(e) def

= {c ∈ C | vars(c) = e}.

3.4 The Representation Functor

Representing values as constraint hypergraphs could be well suited if the oper-
ations of the underlying domain are working on a dense graph representation,
e.g., TVPI. However, for octagons, it is preferable to keep the original repre-
sentation [13] where each variable uses two vertices and constraints are stored
in a half adjacency matrix. In order to make our functor independant of the
underlying domain, we will keep the value representation of the underlying
domain, associating an abstract value to each pack.

Thus, relations will appear twice at frontiers, our representation will be
redundant but more efficient to use in algorithms.

We define this new domain representation as the cartesian product of the
representation D of the underlying domain, restricted to subsets of variables
corresponding to the packs of P , where all ⊥ are merged into a single one:

DP
def
= (DP1 \ {⊥DP1})× . . .× (DPm \ {⊥DPm}) ∪ {⊥DP

}

The set (DP/≡DP
,vDP

,tDP
,uDP

,⊥DP
,>DP

) is a lattice.

v vDP
w

def⇐⇒ ∀i, vi vDPi
wi (>DP

)i
def
= >DPi

v ≡DP
w

def⇐⇒ v vDP
w vDP

v ⊥DP
vDP

x

(v tDP
w)i

def
= vi tDPi

wi ⊥DP
tDP

x
def
= x tDP

⊥DP

def
= x

(v uDP
w)i

def
= vi uDPi

wi ⊥DP
uDP

x
def
= x uDP

⊥DP

def
= ⊥DP

Definition 3.4 Since this representation is redundant, we will say that a
value v = 〈v1, . . . , vm〉 is coherent if and only if constraints coincide at fron-
tiers, i.e., for all i, j, we have πPi∩Pj

(vi) ≡ πPi∩Pj
(vj).

If ∃D and ∩D are exact then for any value v, a coherent value coh(v) can be
built such that v ≡ coh(v). Indeed, simply do for all i, j, vi ← vi∩DπPi∩Pj

(vj).

6

Bouaziz

4 Completion

The completion operation aims at making explicit the implicit relations. For
weakly relational domains, it is needed for most of the other operations, that
is why its cost dominates the efficiency of the domain.

In our case, completion has an extra goal: to transfer information between
the different packs.

Definition 4.1 A value C of PolyhedraV is said to be D-complete if for all
c ∈ DV , C � c implies πvars(c)(C) � c.

Definition 4.2 A domain D is said to be completable if for all value C of DV ,
there exists C ′ ∈ DV such that C ′ ≡ C and C ′ is D-complete.

If D is completable, let D′ denote the set of its D-complete values. If D
owns a completion operation, let complete denote this function. Otherwise,
let D′ equal D and complete be the identity function.

An easy way to complete a value V = 〈C1, . . . , Cm〉 ∈ DP is to use
the completion of DV . Let V ? = completeDV (C1 ∪ . . . ∪ Cm). Then V ′ =
〈πP1(V

?), . . . ,πPm(V ?)〉 ∈ D′P and V ′ ≡ V . While this completion is correct,
it is more expensive than the completion of the underlying domain so there
would be no point in restricting to a subgraph of relations.

However a pointwise completion is not sufficient: suppose that 〈C1, C2〉 ∈
Zones{P1,P2}, P1 = {x, y, z} , P2 = {y, z, t} , C1 = {x ≤ y, z ≤ x} and C2 =
{y ≤ t}. complete(C1) = {x ≤ y, z ≤ x, z ≤ y} and complete(C2) = {y ≤ t}.
Whereas complete(C1∪C2) = {x ≤ y, y ≤ t, z ≤ x, z ≤ y, z ≤ t}. Completion
over P1 provides information that must be injected into C2 and vice versa.

Theorem 4.4, whose proof is based on Farkas’ lemma, shows that never-
theless exchanges between packs can be kept limited.

Lemma 4.3 (Generalized Farkas’ Lemma)
Let E be a finite-dimensional affine space on a field K. Let f1, . . . , fk and

g be affine functionals on E, such that {x ∈ E | f1(x) ≥ 0, . . . , fk(x) ≥ 0} is
non empty.

Then {x ∈ E | f1(x) ≥ 0, . . . , fk(x) ≥ 0} ⊆ {x ∈ E | g(x) ≥ 0} if and only
if there exists α1, . . . , αk, β ≥ 0 such that g =

∑k
i=0 αifi + β.

A proof can be found in standard references [15].

Theorem 4.4 Let C ∈ D′V .
Let X ⊆ V.
Let C+ ∈ DX such that (πX (C) ∪ C+) ∈ D′X .
Let C∪ = C ∪ C+.
Let C ′ ∈ D′V such that C ′ ≡ C∪, e.g., C ′ = complete(C∪).
Then for all Y ⊆ X , πY(C ′) ≡ πY(C∪).

7

Bouaziz

Proof On one side, we have C ′ � C∪, in particular C ′ � πY(C∪). But C ′ is
D-complete and πY(C∪) ∈ DV , hence πY(C ′) � πY(C∪) (from Def. 4.1).

On the other side, the case C∪ ≡ ∅ is trivial, so let suppose that C∪ 6≡ ∅.
Let CX = πX (C∪) = πX (C) ∪ C+ and C− = C∪ \ C∪X ⊆ C.
Let c ∈ DY such that πY(C ′) � c. In particular C ′ � c and C∪ � c.
From Lemma 4.3, there exists α0, . . . , αn, β1, . . . , βm ∈ Q+, cX1 , . . . , cXn ∈

CX , and c−1 , . . . , c
−
m ∈ C− such that c = cX + c− with cX =

∑n
i=0 αic

X
i ,

cX0 = True, and c− =
∑m

j=1 βjc
−
j .

We successively have C− � c−, C � c−, πX (C) � c− (from Def. 4.1, since C
is D-complete and vars(c−) ⊆ vars(c) ∪ vars(cX) ⊆ Y ∪ X = X), and finally
CX � c−. Moreover CX � cX ; summing gives CX � c, and πY(CX) � c because
CX is D-complete. Thus for all c ∈ DY , πY(C ′) � c implies πY(C∪) � c.

And we get πY(C∪) � πY(C ′) from:

〚πY(C∪)〛 ⊆
⋂

c∈DY
πY (C∪)�c

〚c〛 ⊆
⋂

c∈DY
πY (C′)�c

〚c〛 ⊆
⋂

c∈DY
c∈πY (C′)

〚c〛 = 〚πY(C ′)〛

2

This theorem means that if we add new constraints C+ to a complete value
C, such that the result is complete on a subset of variables X , and the result
C∪ is completed again, giving C ′, then contraints on X cannot be improved.
The following algorithm uses this theorem to build completions efficiently.

Completion Algorithm
Let us choose arbitrarily a root in the pack tree and direct this tree such

that arcs are directed from the root to the leaves. Suppose that the root is P1

and that if there is an arc from Pi to Pj then i < j. Let father(i) denote the
pack father of Pi in this directed tree (undefined for P1).

Function completeDP (〈C1, . . . , Cm〉)
for i← m to 2 do {from the leaves to the root}

Ci ← completeDPi (Ci)
if Ci = ⊥DPi then return ⊥DP

Cfather(i) ← Cfather(i) ∪ πPfather(i)
(Ci)

C1 ← completeDP1 (C1)
if C1 = ⊥DP1 then return ⊥DP

for i← 2 to m do {from the root to the leaves}
Ci ← Ci ∪ πPi

(Cfather(i))
Ci ← completeDPi (Ci)
if Ci = ⊥DPi then return ⊥DP

return 〈C1, . . . , Cm〉

8

Bouaziz

Correctness
On one hand, Theorem 4.4 shows that completing packs back and forth

only once is enough to ensure saturation. Any further completeDPi on a pack
will have no effect. This is why we chose a tree-shaped relation graph.

On the other hand, for all C ∈ DP , completeDP (C) ≡ C. This holds
at every step of the algorithm: this is obvious for completeDPi steps; union
steps do not change the concretization of a value since the union is made with
constraints already present in the value; and checks for ⊥ only make implicit
⊥ explicit.

Complexity
Let Ap denote the cost of completing a pack of size ≤ p and Bp,f denote

the cost of the projection and union of a pack of size ≤ p on a pack of size
≤ p, with a frontier of size ≤ f .

The cost Cp,f of the completion algorithm is bounded by:

A|P1| + 2
m∑
i=2

A|Pi| + 2
m∑
i=2

Bmax(|Pi|,|Pfather(i)|),|Pi∩Pfather(i)| ≤ 2m(Ap +Bp,f)

For a bounded pack size, our completion algorithm has a linear complexity
in the number of variables, whatever the underlying domain is. If the under-
lying domain owns an incremental completion [10], it can be used to replace
the global completion in the second loop. The algorithm will be faster but its
complexity remains unchanged.

5 Abstract Operators

In this section we provide domain operations needed by abstract interpreta-
tion. Generally, operators on DP will be easily defined from operators on D.
However, for operators on D, each time a completion is needed, our completion
will actually have to be used.

5.1 Operators on sets

In this section, operator arguments will be considered completed.
Inclusion and equality tests are pointwise on complete arguments. If they

are exact on D then they are exact on DP too.
Intersection being exact (it is a constraint union), it is extented pointwisely

on each pack and remains exact.
If tD is the best abstraction of union in D then tDP , pointwise extension

of tD on each pack of P , is the best abstraction of union in DP .

9

Bouaziz

The forget operator is a projection on a space not containing some given
variables. From a complete value, just remove all constraints involving these
variables.

5.2 Widenings, Narrowings

Widenings of the underlying domain can be applied to each pack indepen-
dently. Convergence of increasing chains in finite time is immediately ensured.
However so formed values can be uncoherent or incomplete. But trying to
make them coherent or complete can jeopardize converge [13]. Indeed widen-
ing relaxes constraints towards +∞ whereas completion has an opposite goal,
the same applies to coherence because it is obtained by intersection.

Similarily, narrowings of the underlying domain can be applied to each
pack independently.

5.3 Constraint Extraction and Addition

We also provide two operations that are useful to build abstract interpretation-
based analysis tools and that cannot be pointwisely extended from the under-
lying domain.

Constraint Extraction
Let 〈C1, . . . , Cm〉 denote a complete value. Suppose that we want to extract

the set of constraints existing between variables from a set X ⊆ V , 1 ≤ |X | ≤
N . If all these variables are in the same pack (e.g., |X | = 1 for interval
extraction) then a simple projection is sufficient. Otherwise, things are more
complicated. For each pack Pi, let X(i)

def
= X ∩ Pi, and suppose that X(1) 6= ∅.

Function extractDP (〈C1, . . . , Cm〉 ,X)
V1..m ← ∅
D1..m ← ∅
for i← m to 2 do

Vi ← Vi ∪ X(i)

if Vi 6= ∅ then
Vfather(i) ← Vfather(i) ∪ Vi
Dfather(i) ← Dfather(i)∪πVi∪(Pi∩Pfather(i))(complete

D(Pi∪Vi)(Ci∪Di))

return πX (completeD(P1∪X)(C1 ∪D1))

This function has a cost bounded by Dp,f = m(Ap+|X | + B(p+|X |),(f+|X |)).
For a bounded pack size and a bounded number of variables of interest, this
function has a linear complexity in the total number of variables. If |X | = 2,
its cost can even be bounded by D′p,f = d(Ap+2 +B(p+2),(f+2)), which is linear
in the diameter of the pack tree.

10

Bouaziz

Adding Constraints
Given a complete value 〈C1, . . . , Cm〉, suppose that we want to add new

constraints C+. If all the variables of the constraints to add are in a single
pack then we can add the constraints to this pack only. Otherwise, we need
to extract from C+ other constraints that can be independently added to
the packs, precisely all constraints that we can get from C+ expressible in
TreeKsD. We keep the same notations, but now X = vars(C+).

Function addDP (〈C1, . . . , Cm〉 , C+)
V1..m ← ∅
D1..m ← ∅
for i← m to 2 do

Vi ← Vi ∪ X(i)

if Vi 6= ∅ then
Vi ← Vi ∪ (Pi ∩ Pfather(i))
Vfather(i) ← Vfather(i) ∪ Vi
Dfather(i) ← Dfather(i) ∪ πVi

(completeD(Pi∪Vi)(Ci ∪Di))

D0 ← πV1(complete
D(P1∪V1)(C1 ∪D1 ∪ C+))

for i← 1 to m do
if Vi 6= ∅ then Ci ← Ci ∪ πPi

(D0)
return 〈C1, . . . , Cm〉

This function has a worst-case cost bounded by Ep,f = m(AN ′ + BN ′,N ′)
where N ′ = min(N,mf +p+ |X |). If |X | = 2 then this cost is generally linear
in the diameter of the graph and is bounded by E ′p,f = d(Adf+p + Bdf+p).
Therefore, adding constraints between distant variables should be avoided as
much as possible.

6 Conclusion and Future Work

This paper has introduced TreeKs, a functor to make numerical abstract do-
main scalable, by restraining the relation graph to a specific shape allowing
efficient algorithms for completion and abstract operations.

Like related work [1,17,5], it relies on packs of variables. Whereas they
did not share relational information in previous work, it is made possible with
TreeKs whilst retaining scalable.

Implementations are warmly welcome and comparisons with existing do-
mains would be interesting. Theoretically, the domain obtained by applying
TreeKs lies, for both precision and cost, between packs with only non-relational
sharing and the underlying domain itself.

This paper does not describe how to generate packs. Astree [1,5] uses
a syntactic criterion whereas C Global Surveyor [17] build them dynamically.
Different software systems may require different packing strategies and coming

11

Bouaziz

to a decision will demand experimental comparisons.
Extensions for domains like pentagons and weighted hexagons, or generally

any convex domain (e.g., ellipsoids [7]), seem conceivable with a more general
framework. However it is unclear how TreeKs could efficiently be applied to
non-convex domains.

References

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. A static analyzer for large safety-critical software. In PLDI’03, pages 196–207.
ACM Press, June 2003.

[2] R. Clarisó and J. Cortadella. The octahedron abstract domain. Science of Computer
Programming, 64(1):115–139, 2007.

[3] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc.
2nd Int. Symp. on Programming, pages 106–130, Paris, 1976. Dunod.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th POPL, pages 238–252, Los
Angeles, 1977. ACM Press, New York.

[5] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does Astrée scale
up? Formal Methods in System Design, 35(3):229–264, 2009.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In 5th POPL, pages 84–97, Tucson, 1978. ACM Press, NY.

[7] J. Feret. Numerical abstract domains for digital filters. In International workshop on Numerical
& Symbolic Abstract Domains, 2005.

[8] J. Fulara, K. Durnoga, K. Jakubczyk, and A. Schubert. Relational abstract domain of weighted
hexagons. Electronic Notes in Theoretical Computer Science, 267(1):59–72, 2010.

[9] J. Howe and A. King. Logahedra: A new weakly relational domain. Automated Technology for
Verification and Analysis, pages 306–320, 2009.

[10] J.M. Howe and A. King. Closure Algorithms for Domains with Two Variables per Inequality.
Technical report, School of Informatics, City University London, 2009.

[11] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract domain for the efficient
validation of array accesses. In Proceedings of the 2008 ACM symposium on Applied computing,
pages 184–188, 2008.

[12] A. Miné. A new numerical abstract domain based on difference-bound matrices. In Proc. of
the PADO II, LNCS vol. 2053, pages 155–172, Aarhus, 2001. Springer.

[13] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–
100, 2006.

[14] S. Sankaranarayanan, H.B. Sipma, and Z. Manna. Scalable analysis of linear systems using
mathematical programming. In VMCAI, pages 25–41. Springer, 2005.

[15] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons Inc, 1998.

[16] A. Simon, A. King, and J. Howe. Two variables per linear inequality as an abstract domain.
LOPSTR, pages 955–955, 2003.

[17] A. Venet and G. Brat. Precise and efficient static array bound checking for large embedded C
programs. In PLDI’04, pages 231–242, Washington, 2004. ACM Press.

12

	Motivation
	Linear Inequality Domains
	The Domain Functor
	Underlying Domain Properties
	Packs and Graphs
	The Functor
	The Representation Functor

	Completion
	Abstract Operators
	Operators on sets
	Widenings, Narrowings
	Constraint Extraction and Addition

	Conclusion and Future Work
	References

