
A Unified Library of Primitives for
QML-Compilers and Interpreters

The Bypass Standard Library

Mathieu Barbin Mehdi Bouaziz

École Normale Supérieure, Paris

mathieu.barbin@ens.fr/mehdi.bouaziz@ens.fr

Abstract
We present in this document a new approach to the manage-
ment of primitives of the QML language, in all kind of ap-
plications, including compilers, interpreters, as well asstatic
analysers, . . . QML being the internal translation of the main
language OPA designed by MLstate to build commercial
web-applications, QML must support several kinds of com-
pilations, targetting the client-side language JavaScript, and
server-side languages OCaml, and more recently LLVM. By
primitives, we denote here the part of the implementation
used as initial library for QML (and so, OPA) applications,
including functions to handle web protocols and markup lan-
guages, mathematics, low level database management, etc.
This can be seen as the core part of QML which has to be im-
plemented in each target language, unlike the rest of the lan-
guage constructions which are automatically and efficiently
compiled.

We expose in this document the main ideas leading to a
standardized and shared interface between the implementa-
tion of these primitives, and the MLstate applications, offer-
ing a possible yet static typing verification of the initial code,
dynamic introspection features, and a shared implementation
of the primitives between interpreters or compilers manipu-
lating codes with different runtime algebras, thanks to re-
generated specializations of the initial library, using a type
projection system.

General Terms Languages, Software Engineering, Design

Keywords Primitives, Bypass, Compilers, Type Checking,
Type Projection

This document is confidential. Any entity or person with access to this information
shall be subject to a confidentiality statement. No part of this document may be
reproduced or transmitted in any form (including digital orhard copies) or by any
means for any purpose without the express written permission of MLstate.

MLstate’09 March 1-September 3, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 MLstate Research

1. Introduction
We assume in this document that the reader is familiar with
the QML language [Binsztok, 2007]. A general overview of
the language types and expressions algebras can be found in
appendix.

One of the particularities of QML on which we will focus
here is that the language has no initial environment, which
means that no type or primitive is defined at starting point of
QML programs. However, it would not be possible to write
complex applications without any primitive. That’s why the
language provides a special primitive construction system
named “bypass” (fig. 1). Historically, QML used to support
only a compilation to OCaml. The text present between
the delimiter characters “%%” was read as a literal OCaml
code portion, and directly inserted into the generated OCaml
code without any transformation. This construction was a

val print_endline =
%% print_endline %% : string →unit

Figure 1: Syntax example: a bypass definition.

way to “bypass” the processing done by the QML-to-OCaml
compiler on the rest of the language constructions, using the
OCaml language as the primitive language, where the rest of
the QML code was translated into OCaml by the compiler.
This design decision used to bring some advantages:

• avoid thead hocdefinition of an initial environment

• use all OCaml primitives in QML for free

Unfortunatly, this system started to show some gaps with the
introduction of new goals for QML:

1. Compilation to LLVM

2. Compilation to OCaml using a code generator using cus-
tom runtime representations for values

3. Simplified compilation to JavaScript

1

4. Several code analysers needing the understanding of the
semantics of these bypasses, or needing to know what
primitives were available on what side (e.g. the slicer)

5. A toy-interpreter for QML

A first look at goals 1 and 2 may lead to a solution based
on code-duplication, replacing all written OCaml-bypasses
by a code written in the target language of a specific com-
piler. Actually, a look at goals 3 and 4 reveals the essence
of the problem: the same QML code must support sev-
eral compilations with different target languages. The slicer
[Bouaziz, 2009] decides which part of the code must be
compiled to the client-side language (that is JavaScript) and
which part to the current language used as the server-side tar-
get language (LLVM or OCaml). Finally for goal 5, writing
an interpreter for a language including OCaml code portions
would mean to write at least an interpreter for OCaml, mov-
ing the problem of primitives declaration to an other part of
the code.

For further developments (such as [Barbin, 2009] and
[Bouaziz, 2009]), QML needed a more generic way to re-
place the bypass system described above. We planned then
to design and implement a new one: this document presents
the solution we have proposed to MLstate, which is today
fully integrated in the framework.

2. The Benefits of a Lookup System
2.1 Original Idea

The main idea is to use keys instead of a row code between
the delimiter “%%”. This change involves changes in appli-
cations inspecting QML codes. When inspecting the bypass
nodes of the QML abstract syntax tree (AST), a lookup in
a dictionary (the bypass map) at the given key will be now
necessary to find the needed information. Although simple,
this idea affects a huge part of the source code: at the begin-
ning, this solution looked dangerous and regressive, because
of the numerous updates needed in the framework, and be-
cause with it, we lost the property to have injection of OCaml
code into QML for free, without any additional work. About
this last point:

1. This was possibly used only in the context of a particular
OCaml code generator

2. However, we planned to provide a simple mechanism to
still be able to use the OCaml library without too much
work (reduced to the registration procedure, see Section
3).

To assure a temporary compatibility with the former system
during a short transitional period, the choice of keys for
primitives has been based on OCaml function names, which
meant that, waiting for updates, the code generator could still
use the keys as it was the pointed data itself.

val + = %%+%% : int →int →int
(∗ In the Bypass Map :

(key "+") →{ ocaml : "+" ; ... } ∗)

Figure 2: Using a bypass map.

2.2 Type Checking

As shown in Figures 1 and 2, bypass nodes are coerced
with a type annotation. Initially, this coercion was strictly
needed by the QML typer, because there is no simple way to
infer the type of a row code between the delimiters “%%”.
(would need an OCaml, a C, and a JavaScript type checker).
So processing this way and trusting user type annotation
does not let easy possibility to detect potential errors soon
enough (at compile time of the QML code) and could result
in unwanted behaviour (usually runtime error,segmentation
fault or security issues in the worst case). Even if type
coercions are carefully written, this is not satisfying anda
real type checkingis needed.

val +. = %%+%% : float →float →float
val x = 2. +. 1.14

Figure 3: Bypass type error

The Figure 3 illustrates a wrong definition of the QML
function+. (the addition operator onfloat), using a bypass
binding. The type given in coercion is coherent with the
name defined for this function in QML. The question we
had in mind was : “At what step of the program’s life (even
runtime) does it fail ? and how (what kind of error exactly)
?”. With the former raw code solution, since the coercion in
Figure 3 give the typefloat →float →float, and as long as
the QML value+. is used as the addition operator on floats,
no QML type error is detected. The raw code+ would be
injected in the generated OCaml code, and then, if we are
“lucky enough”1 a static typing error will be detected by the
OCaml typer, at compile time of the generated server code,
which is very late, and makes the error report process hard
(because of other preprocesses performed on the QML code,
like alpha-conversion, rewritings, . . .).

Thanks to our key system, there is no limitation on the
number of attributes attached to each primitive. So we de-
cided to add a field containing the type of the bypass in the
map. In a case of a type-annoted bypass definition, we can
then compare the type provided in the coercion with the type
of the primitive found in the map from the key.

Thus we now do not trust the user, but we still trust
the creator of the library. Actually, this represents only half
of the work of bypass types verification, because nothing
guaranteesa priori that the registered type in the map is the

1 The generated OCaml code contains a lot ofObj.magic needed to be more
flexible with a low level management of runtime values.

2

##format bind−module "#m␣=␣#m"
##format bind "#n␣=␣(#n)" "␣;␣"
##format in−module "let␣#n␣=␣%%#k%%␣:␣#t␣in"
##format sub−module "let␣#m␣=␣\n#{#rec,␣in−module}\n␣{␣#{bind−module␣bind}␣}␣in"
##format module "val␣#m␣=␣\n#{␣sub−module,␣in−module␣}\n␣␣{␣#{bind−module␣bind}␣}"

Figure 4: Recursive Formats.

real type of the finally called primitive. This verification is
performed during the map building process with the register
mechanism (see next section below).

2.3 Applications Using the Bypass-Map

We can sum up the new actions done by the applications
working at some point with primitives:

1. Find a bypass in the AST,

2. Do a lookup in the bypass-map,

3. Use the part of the information provided corresponding
to the nature of the application:

• QML typer: type of the primitive;

• OCaml, JavaScript, LLVM compilers: specializes raw
code of the primitive in the target language;

• Slicer: client-server repartition of the available imple-
mentations;

• Interpreter: a dynamic function pointer.

2.4 Production of the Binding Code

Another idea developed in the library came from the ob-
servation that most of the bypass definitions are just simple
bindings between new QML values and bypass-keys (Figure
5). With a map, this kind of code can easily be automatically

val + = %%+%% : int →int →int
val − = %%−%% : int →int →int
val ∗ = %%∗%% : int →int →int
...

Figure 5: Some Bypass definitions.

produced (a simple iteration on tuples (key, val)), and bring
safety with the guarantee that the coercion provided really
reflects the type present in the map. Moreover it helps the
maintenance in case of changes by avoiding manual updates.

We added a preprocess directives system to produce this
kind of code (Figure 5), without using a particular and fixed
syntax, using custom format definitions. We completed it
also with a support for hierarchical bypass definitions (mod-
ules), with iterations on module contents, and recursive for-
mats (Figure 4).

##format function "val␣#n␣=␣%%#k%%␣:␣#t"
(∗ all bypasses from mod. Pervasives ∗)
##include function Pervasives

Figure 6: Bypass definition preprocessor.

We have seen in this part the point of view of the applica-
tions using directly the bypass map, i.e. the introspectionof
the bypass library.

3. The Registering Process
We see here how the bypass map is built.

3.1 The Directive ##register

There was a few possible ways to do it. Whereas the imple-
mentation files are written in different languages (OCaml,
C, JavaScript), we wanted to write a unified parser for them.
We decided to use preprocessor directives as code annota-
tions, to register the primitives. During parsing the different
files given, we also parse the type and check that there is
no duplication of primitives and no clash between the same
function in different languages.

(∗ in the ML implementation of the library ∗)
##register add_int : int →int →int
let add_int = (+)

/∗ in the C implementation of the library ∗/
##register add_int : int →int →int
int add_int (int a, int b) { return(a+b); }

/∗ in the JS implementation of the library ∗/
##register add_int : int →int →int
function add_int(a, b) { return a+b };

example : run application bslbrowser
as a sample of an application
with introspection features
bslbrowser:bypervasives/$ ls | grep add_int

add_int : int →int →int {c, js, ml}

Figure 7: The registering process.

The rest of the code is not parsed, but collected in a
file where the directives have been removed. This file can

3

then be checked and compiled using external applications
(ocamlopt, gcc, JavaScript validators, . . .).

3.2 Type Checking in OCaml and JavaScript

4. Implementation
The implementation of our library, called libBSL, and all the
needed command line applications used to parse and reg-
ister implementation files, build bypass libraries and plug-
ins, using meta-programming technics, . . . represents a total
amount of about 4800 loc. The library is today included in
the MLstate framework, and used by the QML interpreter, all
the compilers (client and server side), and the new version of
the slicer.

A bunch of tests of all the main parts of the library are
available to assure the non regression of the code itself, but
also its interface with the rest of the code (especially the type
inference and code generators).

The implementation contains some documentedmli files.
We have also provided an internal manual for developers.
It contains in particular more details about technical issues,
which do not appear in this document.

5. Conclusion and Future Work
In this document we have reported the design and the im-
plementation of a library used by QML compilers and inter-
preters, to get dynamically introspection information about
primitives, based on a simple registration mechanism com-
bined with a meta-programming system. This new library
is now included in the MLstate’s framework, and brings in
particular the properties that the primitives declarationtypes
are statically checked at compile-time of the initial library,
and the implementations can be shared between interpreters
and compilers manipulating different runtime algebras. This
last feature has been really improved, and is one of the key
of the semantic agreement between the QML interpreter and
compilers available in the framework [Barbin, 2009].

As a future work we would like to further explore the ap-
plicability of the types projection system used with OCaml
primitives, for JavaScript and LLVMR©. We would like to
think about a way to extend the type verification done
with OCaml and C at compile-time to the initial library for
JavaScript. We would also like to introduce a strong mech-
anism to refer to serialization/unserialization functions of
extern types, to help the slicer to distinguish between the
abstract values which can be transfered on the network un-
like the side-specific values (e.g. database path for server, or
DOM objects for client).

Acknowledgments
We want to thank Henri Binsztok for his intership proposal
and most generally the QML team as well as the OPA team
for the quality of the work done at MLstate. We have really
enjoyed the discussions around all the subjects aborded by
the libbsl, especially the contribution of Louis Gesbert, Rudy

Sicard, and Nicolas Pelletier for both their help in the archi-
tecture and the design of the lib, and the first feedbacks by
testing and including it in the framework. Thanks to Mikolaj
Konarski and Geoffroy Chollon for the introduction of the
library into the LLVM compiler and the optimized OCaml
code generator.

References
[Barbin, 2009] Mathieu Barbin. Semantics & Reference Imple-

mentations for a Functional Language with Overloads, Extensi-
ble Records and Parallel Evaluation. Technical report, MLstate.

[Binsztok, 2007] Henri Binsztok. QML, a Persistent Functional
Language. Technical report, MLstate, France. Internal
document.

[Bouaziz, 2009] Mehdi Bouaziz. Optimized Client-Server Distri-
bution of Ajax Web Applications. Technical report, MLstate.

[Leroy et al., 2008] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy, and Jérôme Vouillon.The Objective
Caml system, documentation and user’s manual — release 3.11.
INRIA. http://caml.inria.fr/ocaml/.

[Rémy, 1992] Didier Rémy. Efficient Representation of Extensible
Records. InProceedings of the 1992 workshop on ML and its
Applications, page 12, San Francisco, USA.

A. The QML Language
A.1 General Overview

QML is a purely functional language, with a syntax not far
from ML (e.g. OCaml [Leroy et al., 2008]), including let-
binding and pattern matching. One of the particularities of
the language is that it contains its own database manage-
ment, using first class language constructions. This is the
only imperative part of the language : data access (read /
write), named simplydatabasein the rest of this appendix.

A.2 Data-Types

A.2.1 Basic Types

These types are types of constants.

• Void unit
• Int int
• Float numbersfloat
• Charchar
• Stringstring

Notice that the type boolean is not a primitive type, as we
will see in the next part.

A.2.2 Records Types

The records types used in QML are extensible recordsà la
Rémy [Rémy, 1992].

A.2.3 Sum Types

Sum types are built from different cases of records types.
There is no explicit constructors in QML as we find in ocaml.

4

typedef ::= | typeconst (basic type)
| typeident (named type)
| { fieldident : typedef

[; fieldident : typedef [...]] } (record)
| typedef / typedef [/ typedef [...]] (type sum)

typeconst ::= | unit
| int
| float
| char
| string

Figure 8: QML type definitions.

expr ::= | const (constant value)
| ident (identifier)
| (expr : typeident) (coercion))
| fun ident →expr (lambda)
| expr expr (apply)
| let valident = expr in expr
| let rec ident = expr

[and ident = expr [...]]
in expr

| { fieldident = expr } / expr (record extending)
| expr.fieldident (field of a record)
| match expr with

| pattern →expr (pattern matching)
[| pattern →expr [...]]

| dbpath (database path, read)
| dbpath = expr (database write)
|%%bslkey%% (function of the library)
| assert expr in expr (assertion)

const ::= | unit, a void expression (typeunit)
| an integer (typeint)
| a floating point number (typefloat)
| a character (typechar)
| a string of characters (typestring)
| the empty record (any type record)

typeident ::= a type identifier

pattern ::= | const (constant value)
| ident (binding)
| _ (any value)
| { ident = pattern } / pattern (field of a record)

dbpath ::= /dbident/val0/val1/.../valn

wherevali depends on the type of/dbident/val0/.../vali−1

an expression of type string in case of astringmap
an expression of type int in case of anintmap

the name of a field in case of a type record

Figure 9: QML expressions.

5

The language supports parametric, and recursive definitions
of new types.

type bool = { false } / { true }
type ’a list = { nil } / { hd : ’a ; tl : ’a list }

Deconstruction of sum types is done as usual with amatch:

val list_length =
let rec aux acc x =

match (x : list) with
| { nil } →acc
| { hd ; tl } →aux (succ acc) tl

in aux 0

Conditional statements are possible, using a syntactic sugar:
if condition then expr1 else expr2 is rewritten in:

match (condition : bool) with
| { true } →expr1
| _ →expr2

A.2.4 Usual ML Types

As a language of the ML family, QML contains arrow types,
type variables, and named types.

A.2.5 Overloaded Types

In the newest version of QML, operators can be overloaded.
The typeoverload is used to describe that an operator has
more than a single type.

> val ++. = (+) over (+.)
qmlval ++. : (int →int →int) & (float →float →float)

A.3 Expression Algebra

A QML code is composed of:

• Type definitions (Figure 8):

type typeident = typedef

• Database definitions:

val dbident : typedecl

• Values (Figure 9):

val ident = expr

Operators (like+, −, ∗, /, not, &&, ||, ^, . . .) are just
sugar for call to primitive functions of the library.

B. The MLstate Company
MLstate is a young innovative company that aims to make
functional languages more popular. Grown in almost 18
months from 1 to 20 employees including 7 PhDs and 6
Research Engineers, MLstate benefits from the support of
Groupe Caisse d’Epargne.

MLstate currently prepares the launch of its revolutionary
technology, OPAR© (One Pot Application), which is a new
programming language for online applications.

OPA, which offers at the same time a new language, a
new database and new servers, is a breakthrough in develop-
ing Web 2.0 applications. The expected benefit of the single
specification exceeds productivity gains by opening a field of
research on safety, security and automated analysis of Web
applications.

For this, MLstate has a strong will of academic collabora-
tions, although most of its research has been done internally.
The preparation of a European project including the Univer-
sity of Edinburgh triggered the opening of a second research
office in Edinburgh (after Paris) in the field of languages and
functional databases.

OPA has received numerous awards and won the con-
test of French Ministry of Research 2008. Finalist of Paris
Innovation Grand Prix in 2007, OPA has the potential to
bring state-of-the-art research to industry and was cited in
the ‘Best Of’ Atelier BNP Paribas in 2008.

MLstate has signed a long term partnership with Epitech,
ensuring thereby a presence on the labor market and teach-
ing the programming language to initiate a community of
passionate programmers.

MLstate is a member of the competitiveness cluster Sys-
tem@tic, and targets software companies and publishers. In
addition, MLstate uses OPA internally to build software such
as ERP for SMEs and social networks.

6

